Characterization of an Adenovirus Reference Material

Barry Sugarman, Ph.D.
Member, Adenovirus Reference Material Working Group and
Associate Director, Process Sciences
Canji, Inc., San Diego, CA
Adenovirus Reference Material Working Group Mission

- Oversee development of an adenoviral reference material such that the primary reference is available ASAP

- Be responsible for identifying the process to evaluate and select appropriate group(s) to manufacture, characterize, and distribute the reference material(s)
Adenovirus Reference Material Working Group Goals

- Produce a reference material that is meaningful and useful to all kinds of laboratories (not technology dependent), and able to be made in multiple lots that should be comparable
- Maintain a transparent decision-making process to validate the group’s efforts
Not a Part of the Mission

- Standardize specific methods
- Endorse specific cell culture, viral culture, purification, formulation, or analytical methods
- Develop regulatory policy
Where Do Things Stand?

Production phase **completed**
- 5300 x 0.5-mL vials were transferred to ATCC
- approx 500 of these for characterization phase
- ARM made mostly under CGMP w/documentation

Characterization phase **completed**
- ARMWG/FDA reviewed all data & **assigned**
 particle concentration & infectious titer

Publications in preparation / submitted / in press
Where Do Things Stand?

- Adenovirus Reference Material released to the public in **August 2002**
- Available from ATCC
 - Website: www.atcc.org
 - Limit to number of vials one institution can order
Characterization Phase Activities

- Determination of particle concentration of Adenovirus Reference Material
- Determination of infectious titer of Adenovirus Reference Material
- Long-term stability at –80°C and –20°C (over 5 yr)
- Short-term field use and shipping configuration stability
- Other characterization of the Adenovirus Reference Material including sequence analysis
- Total number of vials required: approx. 500
Characterization Phase: Particle Concentration

- All participants performed OD260nm/SDS method using SOP from ARMWG
 - (15 labs, n=60)
- ARMWG also accepted proposals to perform orthogonal methods:
 - AE-HPLC (3 SOPs, n=12 for 1 SOP)
 - RP-HPLC (1 SOP, n=8)
 - Taqman PCR (2 SOPs, n=25 for 1 SOP)
 - PicoGreen (2 SOPs, n=12 for 1 SOP)
 - Electron microscopy (1 SOP, n=1)
Characterization Phase: Particle Concentration

<table>
<thead>
<tr>
<th>Assigned Particle Concentration [Mean] (p/mL)</th>
<th>5.8 x 10^{11} p/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>14 assays</td>
</tr>
<tr>
<td></td>
<td>(13 labs)</td>
</tr>
<tr>
<td>True Particle Concentration lies w/95% Certainty within Range</td>
<td>5.6 x 10^{11} to 6.0 x 10^{11}</td>
</tr>
<tr>
<td>3 Standard Deviation Limit Range</td>
<td>4.8 x 10^{11} to 6.9 x 10^{11}</td>
</tr>
</tbody>
</table>

(If ARMWG SOP used, all values should fall in this range)
Characterization Phase: Infectious Titer

- All participants to perform Infectious Titer method using SOP from ARMWG (17 labs, n=34)
 - 293 cell-based
 - 96-well
 - day 10 CPE readout
 - square root of two-fold dilution scheme
 - diffusion-corrected infectious titer calculation

- ARMWG accepted proposals to perform other assays:
 - a plaque assay (n=1)
 - a flow cytometry-based hexon expression assay (n=1)
 - a different CPE assay (n=1)
Characterization Phase: Infectious Titer

<table>
<thead>
<tr>
<th>Assigned Infectious Titer (Based on Maximum likelihood analysis)</th>
<th>7×10^{10} IU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>30 independent assays (17 labs)</td>
</tr>
<tr>
<td>True Infectious Titer lies w/95% Certainty within Range</td>
<td>7×10^{10} to 8×10^{10}</td>
</tr>
<tr>
<td>3 Standard Deviation Limit Range</td>
<td>3×10^{10} to 18×10^{10}</td>
</tr>
</tbody>
</table>

(If ARMWG SOP used, all values should fall in this range)

as measured on 293 HEK cells
Characterization Phase: Other Characterization #1

- DNA Sequencing of reference material (Canji/SeqWright)
 - Sequence mostly as expected compared to GenBank Ad5 WT sequence
 - Sequence will be deposited with GenBank

- Particle size distribution via photon correlation spectroscopy & Electron microscopy
 - U Texas–Austin/Croyle & Transgene: PCS
 - SPRI - EM
 - Very homogenous preparation
 - EM results showed >70% as single Ad particles with remainder as doublets, triplets, or multiplets
Characterization Phase: Other Characterization #2

- Residual host cell DNA (Althea)
 - <3 pg/µg total DNA of 293 DNA for fragment sizes of 120, 411, and 757 bp

- Residual host cell proteins
 - Cygnus kit (Canji)
 - 18.4 ng/mL 293 HCP

- Free hexon (SPRI)
 - 1.16 µg/mL based on immunoaffinity/gel filtration assay
 - approx 2.0 µg free hexon per 10^{12} particles
Characterization Phase: Other Characterization #3

- OD 260nm to OD 280nm (0.1% w/v SDS) Ratio (Introgen, Onyx)
 - 1.37 – 1.38
- Endotoxin (Chromogenic LAL) (Introgen)
 - < 0.15 EU/mL
- Free of adventitious agents (Introgen)
 - Passed sterility
- 31K MW precursor protein form (SPRI)
 - None detected by RP-HPLC assay
Characterization Phase: Long-term Stability over 5 years

- OD260nm/SDS via ARMWG SOP
- Infectious Titer
- AE-HPLC
- Particle size distribution by dynamic light scattering
- Electron microscopy (selected time points)
- OD320 nm light scattering (selected time points)
- Sterility (selected time points)
 - instead of container integrity at selected time points
Characterization Phase: Long-term Stability #2

-80°C Time points:
 - T=0, 6, 9, 12, 18, 24, 36, 48, and 60 months
-20°C Time points (limited analyses; data not shown):
 - T= 12, 24, 36, 48, and 60 months

Awarded to Canji, Inc.
Characterization Phase: Short term field & shipping stability

- Shipping Stability using ATCC configuration
 - Package held 2 days @ 40°C and then an additional day @ 50°C
- Monitor stability after 3 F/Ts
- Thaw & monitor stability at –20°C over 7 days
- Thaw & monitor stability at 2-8°C over 7 days
- Thaw & monitor stability at RT over 7 days
Characterization Phase: Short term field stability #2

- Stability monitored via:
 - OD260nm/SDS ARMWG SOP
 - Infectious titer via ARMWG SOP
 - Infectious titer via flow cytometry using hexon expression (GTI SOP)
 - AE-HPLC (GTI SOP)
 - *Photon correlation spectroscopy
 - *Particle size distribution via dynamic light scattering

- ARMWG awarded study to GTI/Novartis
 - add’l methods (*) performed by Transgene & Univ Texas-Austin (Croyle)
Characterization Phase: Short term field stability #3

- ARMWG Conclusions
 - Some aggregation in some vials after single freeze-thaw, i.e., after standing for more than 4 h upon thaw after receipt from ATCC
 - ARM can be thawed at room temperature and left at either room temperature or at 2-8°C for as long as 4 hours without impact
 - ARM can be shipped in the ATCC long distance configuration successfully

- These are the most conservative conclusions possible from the available data. Individual sponsors may be able to extend these findings.
ARMWG – A Model for Other Reference Materials?

- Process has gone relatively quickly & smoothly
 - Influenced by Gelsinger death, public perceptions
- Membership did not always agree, especially in the initial meetings; lively discussion on assignment of infectious titer
- Focused on goals & found ways to compromise between members while still achieving goals
 - Sometimes had to remind ourselves that we were not setting policy
For More Information

- Stephanie Simek: simek@cber.fda.gov
- Steven Bauer: bauer@cber.fda.gov
- Andrew Byrnes: brynes@cber.fda.gov
- Keith Carson: wbf@wilbio.com

- www.wilbio.com
- www.atcc.org
Acknowledgments

- Stephanie Simek, PhD, CBER/FDA
- Steven Bauer, PhD, CBER/FDA
- Andrew Byrnes, PhD, CBER/FDA
- Beth Hutchins, Ph.D., Canji, Inc.
- Estuardo Aguilar-Cordova, PhD, Advantagene
- Keith Carson, Williamsburg BioProcessing Foundation
- ARMWG Membership & Characterization Phase Participants
Institutions donating materials and services (alphabetical listing):

- AFSSAPS (France)
- Althea (San Diego, CA)
- AppTec Laboratories (Camden, NJ)
- ATCC (VA)
- Berlex Biosciences (Richmond, CA)
- BioReliance (Rockville, MD)
- Biotechnology Research Institute (Canada)
- Canji, Inc. (San Diego, CA)
- Cell Genesys (Foster City, CA)
- Cobra Therapeutics (UK)
- Covance Laboratories (UK)
- EM Laboratories (NJ)
- Genetic Therapy Inc / Novartis (Gaithersburg, MD)
- Harvard University (Boston, MA)
- Introgen (Houston, TX)
- Invitrogen-Gibco (Grand Island, NY)
- NIBSC
- MDS PharmaServices (Bothell, WA)
- Onyx (Richmond, CA)
- Q-Biogene (Canada)
- Q-One Biotech (Worcester, MA; Glasgow, UK)
- Schering Plough Research Institute (Union, NJ)
- Selective Genetics (San Diego, CA)
- SeqWright (TX)
- Transgene (Strasbourg, France)
- University of Alabama at Birmingham (AL)
- University of Texas at Austin (TX)
Any Questions?
How ARMWG Functions

- ARMWG has representation from:
 - FDA, NIBSC, ATCC, USP, Williamsburg BioProcessing Foundation
 - 5 academic groups (international)
 - 5 contract manufacturers (international)
 - 4 testing companies (international)
 - 15 Pharma/Biotech companies (international)
 - 2 suppliers

- Established a list of activities that were open for bid proposals
- Established criteria upon which selection would be made
- Called for bid proposals
- FDA evaluates proposals and makes recommendations to the Working Group
How ARMWG Functions

- Co-Chairs
 - Beth Hutchins (Canji)
 - Estuardo Aguilar-Cordova (Advantagene)
- Decisions made by vote of the Working Group (FDA has generally abstained from votes)
- Decisions and ARMWG meeting minutes made available via websites, journals, and meetings
- Information is posted on the WBF website:
 - www.wilbio.com